현대 기후 변화가 일어난 원인
기후계는 수십 년 혹은 수 세기를 주기로 하는, 엘리뇨-남방 진동과 같은 다양한 기후 변동을 가지고 있다. 그 외의 변화는 기후계 '외부'의 에너지 불균형으로 인해 발생하지만 외부가 꼭 지구 외부를 의미하는 것은 아니다. 기후계의 외부 영향으로는 온실 기체의 농도 변화, 태양 광도의 변화, 화산 폭발, 태양 주위를 도는 지구 궤도의 여러 변화 등이 있다.
기후 변화에 있어 인간이 얼마나 많은 영향을 끼쳤는지 분석하기 위해서는 알려진 기후계 내부 변동이나 자연적인 외력은 배제해야 한다. 여기서 사용하는 접근법은 모든 잠재 원인에 대한 일종의 '지문'을 지정한 다음 이 지문을 관측된 기후 변화 패턴과 비교하는 것이다. 예를 들어 태양 궤도 변동을 주요 원인으로 배제한다. 이 지문은 대기 전체를 따뜻하게 만들 것이다. 하지만 이 지문을 빼더라도 하층부 대기만 따뜻해지는데 이는 온실 기체의 효과로 인해 발생하는 것이다. 현대 기후 변화의 원인은 전적으로(100%) 점차 증가한 온실 기체 때문이며 에어로졸이 여기에 약간의 감쇠 효과를 가지고 있다.
온실 기체
지구는 태양에서 내려온 햇빛을 흡수하고 이를 복사열의 형태로 다시 방출한다. 대기 중의 온실 기체는 적외선을 흡수한 후 다시 방출하여 복사열이 대기를 통과해 우주로 방출하는 속도를 지연시킨다. 산업 혁명 이전에는 자연적으로 발생하는 온실 기체 때문에 지표면 근처의 기온은 온실 기체가 하나도 없었을 때보다 약 33°C 더 높았다. 온실 효과에 가장 큰 영향을 주는 요인은 수증기(~50%)와 구름(~25%)이지만 이 둘은 기온에 영향을 받아 증가하는 관계가 있는 기후계 내부 요소에 해당하며 온도에 따라 두 요인의 크기가 계속해서 피드백된다. 반면 이산화 탄소(~20%), 지상의 오존 염화 플루오린화 탄소(CFC), 아산화질소 등의 기체 농도는 온도에 영향을 받지 않는 기후계 외부 압력에 속한다.
산업 혁명 이후에는 화석 연료(석탄, 석유, 천연가스)를 추출하고 연소하는 등 인간의 활동으로 대기 중 온실 기체량이 많이 증가하여 복사 불균형 현상이 발생했다. 2019년 기준 이산화 탄소와 메테인의 농도는 1750년 이후 각각 약 48%, 160% 증가했다. 현재의 이산화 탄소 농도는 지난 2백만년 기준 최고 수치이다. 메테인의 농도는 지난 80만년 기준 최고 수치이다.
2019년 기준 전 세계의 인위적인 온실 기체 방출량은 이산화 탄소 약 590억 톤과 맞먹는다. 총 온실 기체 방출량 중 이산화 탄소가 75%, 메테인이 18%, 아산화질소가 4%, 플루오린화 기체가 2%였다. 이 중 이산화 탄소의 배출은 주로 교통, 제조업, 난방, 전기를 위한 에너지를 쓰기 위해 화석 연료를 태우며 발생하였다. 그 외에도 산림 벌채와 산업 공정에서도 이산화 탄소가 배출되었는데 주로 강철, 알루미늄, 비료를 제조하기 위해 사용하는 화학 반응으로 이산화 탄소가 배출되었다. 메테인은 주로 가축 목축, 천연 거름 이용, 쌀 재배, 매립지, 폐수, 석탄 및 석유, 천연가스 채굴 과정에서 배출되었다. 아산화질소는 주로 비료의 미생물 분해 과정에서 배출되었다.
온실 기체 방출에 산림 벌채가 큰 요인을 차지하고 있지만 그럼에도 지구의 육지 표면, 특히 숲이 가장 큰 탄소 흡수원 역할을 하고 있다. 토양의 생물학적 탄소 고정이나 광합성과 같은 지표면의 탄소 흡수 작용으로 연간 전 세계 이산화 탄소 배출량의 29%가 다시 흡수된다. 바다도 두 단계 과정을 통해 중요한 이산화 탄소 흡수원 역할을 한다. 먼저 표층수에 이산화 탄소가 용해되고 나면 바다의 열염순환 과정에서 이산화 탄소가 흡수된 바닷물이 해양 심층으로 깊숙이 골고루 가라앉고 시간이 지나면 탄소의 순환 과정으로 바다 심해에 축적된다. 지난 20년간 전 세계의 바다가 그동안 배출한 이산화 탄소의 20~30%를 흡수하였다.
에러로졸과 구름
연무질(에어로졸) 형태의 대기 오염은 인간의 건강에도 큰 영향을 끼칠 뿐 아니라 기후에도 큰 영향을 미친다. 1961년부터 1990년까지 지구 표면에 도달하는 햇빛의 양이 점차 감소하는 현상이 관측되었는데 이를 대중들은 지구 음 암호라고 불렀으며 그 원인은 바이오 연료와 화석 연료의 연소 과정에서 발생한 에어로졸이 지구 대기에 영향을 줘서 발생했던 것으로 알려져 있다. 전 세계적으로 에어로졸의 농도는 1990년 이후부터 꾸준히 감소하였으며 이는 에어로졸이 더 이상 온실 기체의 온난화 효과를 저지하지 못한다는 뜻이다.
에어로졸은 지구 대기 중에서 산란시키고 태양 복사를 흡수한다. 또한 지구의 복사열 수지에도 영향을 미친다. 황산 에어로졸은 구름 응집 핵 역할을 하여 더 작고 더 많은 물방울을 지닌 구름으로 변화한다. 이런 에어로졸 구름은 더 크고 더 적은 물방울을 지닌 구름보다 태양 복사의 반사율이 더 높다. 또한 구름에 들어오는 햇빛을 더 많이 반사되게 만드는 빗방울의 성장도 감소시킨다. 에어로졸의 간접적인 영향은 각각의 요소가 서로 다른 영향을 주기 때문에 복사 강제력에 있어 가장 큰 불확실성을 만든다.
에어로졸은 보통 햇빛을 반사해 지구 온난화의 영향을 제한시키지만 얼음 위에 떨어지는 그을음과 같은 블랙 카본은 지구 온난화에 영향을 준다. 블랙 카본은 땅의 햇빛 흡수량을 늘리고 눈과 얼음을 녹여 해수면 상승을 이끈다. 북극에 새롭게 쌓인 블랙 카본 퇴적물을 제한하면 2050년까지 기온 상승을 0.2 °C 낮출 수 있다.
토지 이용 변화
인간은 보통 더 많은 농경지를 확보하기 위해 지구 토지를 변화시킨다. 현재 지구 토지 영역의 34%가 농경지이며 26%는 숲, 30%는 사람이 살 수 없는 빙하나 사막 같은 지형이다. 산림의 넓이는 계속 줄어들고 있는데 이 과정에서 일어나는 토지 이용 변화로 지구 온난화가 가속화되고 있다. 탈산림화로 나무가 벌채될 때 나무 안에 있던 이산화탄소가 방출되고 그 나무가 미래에 더 많은 이산화탄소를 흡수할 수 있는 기회를 빼앗는다. 산림 벌채가 일어나는 주요 원인으로는 고기 및 팜유와 같은 작물 생산을 위한 농지로 영구 토지 이용 변화가 27%, 임업, 수산업 가공품 생산을 위한 벌목이 26%, 화전농업과 같은 단기간 이동경작이 24%, 산불이 23%이다.
토지 이용 변화는 온실 기체 배출에만 영향을 주는 것이 아니다. 그 지역의 식생 유형이 지역의 평균 기온에도 영향을 준다. 즉 식생 유형은 얼마나 많은 햇빛이 다시 우주로 반사되는지(반사율), 얼마나 많은 열이 증발로 손실되는지에 영향을 미친다. 예를 들어, 어두운 숲이 초원으로 변하면 표면이 더 밝아져 반사율이 증가해 햇빛이 더 많이 반사된다. 또한 탈산림화는 구름에 영향을 미치는 화학적인 화합물 방출 조성을 변형하고 바람 패턴을 변화시켜 기온에 영향을 줄 수 있다. 열대 지방과 온대 지방에서는 모든 요소를 합친 순 효과가 온난화를 가속하는 반면, 극지방에 가까운 고위도에서는 숲이 눈밭으로 바뀌면 반사율이 증가해 냉각 효과가 발생한다. 전 세계적으로 총 영향은 지구 표면 반사율의 증가로 아주 미약한 냉각 효과가 발생한 것으로 추정된다.
태양과 화산 활동
물리적 기후 모델에서는 태양 활동과 화산 활동의 변화만으로는 최근 수십 년간 관측된 급격한 온난화를 재연할 수 없다. 태양은 지구에 들어오는 에너지원이기 때문에 지구로 내리쬐는 햇빛의 변화는 기후계에 직접적인 영향을 가져온다. 인공위성을 통해 태양의 복사조도 수치를 측정하고 있으며96] 간접 관측 기록까지 합치면 1600년도부터 현재까지 태양 활동의 변화를 추적할 수 있다. 지구로 들어오는 총 태양 에너지는 증가 추세가 없다. 지구 온난화를 일으키는 것이 온실 기체라는 또 다른 강력한 증거로는 대기 하부(대류권)는 기온이 점점 증가하지만 대기 상부(성층권)는 기온이 점점 하강하고 있다는 관측 결과이다. 만약 태양 활동 때문에 지구 온난화가 발생한 것이라면 대기 상부와 하부 모두 기온이 증가해야 한다.
거대한 화산 분화는 산업화 이전까지 가장 거대했던 자연적인 기후 변동 요인이다. 분화가 매우 강해서 대기 성층권에 이산화 황이 흝뿌려진다면 수년간 에어로졸이 햇빛을 차단할 수 있다. 온도는 약 두 배 정도 영향을 받는다. 산업화 이후 화산 활동은 지구 기온의 향방에 거의 무시할 수 있을 정도로 영향을 주지 못한다. 현재의 화산성 이산화 탄소 배출량은 인간이 배출하는 이산화 탄소 배출량의 1% 미만이다.
피드백
초기 위에서 나열한 여러 강제력으로 입력을 준 기후계의 반응은 피드백을 통해 조정된다. 피드백으로는 자기 강화 피드백, 즉 양성 피드백으로 반응이 더 커지고 반대로 음성 피드백으로는 반응이 약해진다. 기후계의 주요 양성 피드백에는 수증기 피드백, 얼음-반사율 피드백, 구름의 순효과 반응이 속한다. 지구의 일차적인 음성 피드백으로는 복사냉각 반응으로 지구의 표면 온도가 상승하면 그에 따라 더 많은 복사열을 우주로 방출한다. 온도 피드백 외에도 식물 생장에 대한 이산화 탄소의 비료 효과와 같이 탄소 순환과 같은 피드백도 있다. 기후 모델마다 주어진 온실 기체 입력값에 따라 서로 다른 규모의 온난화를 예측하는 이유도 바로 이 피드백의 불확실성 때문이다.
공기가 온실 기체 때문에 따뜻해져 기온이 상승하면 더 많은 수분을 함유할 수 있다. 수증기는 매우 강력한 온실 기체이므로 대기를 더 많이 가열한다. 여기서 구름으로 덮인 땅의 면적이 증가한다면 더 많은 햇빛이 우주로 반사되어 지구가 냉각될 것이다. 만약 구름이 더 높은 높이에 생기고 더 얉아진다면 구름이 단열재 역할을 하여 지표면에서 반사한 열을 다시 지표면으로 구름이 반사하는 역할을 하여 지구 안에 열이 갇히고 지구가 더워질 것이다. 구름의 영향은 피드백의 불확실성에 있어 가장 큰 요인으로 작용한다.
또 다른 기후계의 주요 피드백으로는 북극의 눈으로 덮인 지역과 해빙의 감소 반응으로 이 둘이 일어나면 지구의 반사율이 감소한다. 더 많은 태양 에너지가 반사율이 낮아진 지역에서 흡수되면서 북극의 온도 변화가 증폭된다. 북극의 증폭 현상으로 영구 동토층도 빠르게 녹아 메테인과 이산화 탄소를 대기 중으로 방출한다. 기후 변화는 습지, 해수계, 담수계의 메테인 방출도 증폭시킬 수 있다. 이 효과 때문에 기후계의 전체적인 반응은 점점 양성 피드백이 강화되는 방향으로 흘러갈 것이다.
인간이 배출한 총 이산화 탄소의 약 절반은 육지의 식물과 바다가 흡수했다. 육지에서는 이산화 탄소 농도의 증가와 생장기의 확대가 식물의 성장을 자극했다. 하지만 기후 변화는 식물의 성장을 방해하는 가뭄과 폭염을 강화하기 때문에 식물의 탄소 흡수구가 계속 증폭될지는 미지수이다. 토양도 많은 양의 탄소를 함유하고 있으며 가열되면 일부 탄소가 방출될 수 있다. 더 많은 이산화탄소와 열이 바다에 흡수되면 바다가 산성화되어 해양 순환이 변하고 식물성 플랑크톤이 더 적은 탄소를 흡수해 바다가 대기 중의 탄소를 흡수하는 속도가 느려진다. 전반적으로 이산화 탄소의 농도가 높아진다면 더 적은 배출량만 자연이 흡수하게 된다.
'Don't worry be happy' 카테고리의 다른 글
미국의 대통령 선거 복식 투표 과정 (6) | 2024.09.21 |
---|---|
온난화와 탄소 수지 영향 적응 정책 사회적 반응 (2) | 2024.06.25 |
기후변화 지구 온난화 관측된 기온 상승 (0) | 2024.06.24 |
핀란드의 경제 역사 유럽연합 정책 직업 소득구조 (2) | 2024.06.23 |
자동차관리 구분 규모별 유형별 (0) | 2024.06.23 |